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SUMMARY 

In the present paper we discuss the regularity of the principal value of the potential due to a doublet distribu- 
tion ja along the boundary S of a two-dimensional (2-D) open connected set. Assuming S to be a Lyapunov 
boundary and t~ to be essentially bounded, we prove that the principal value in 2-/)  is more regular than the 
one in 3-D. This result is applied to the aerodynamics problem of calculation of potential flows around 2-D 
bodies. 

1. Introduction 

The solution of the Dirichlet problem for Laplace's equation in two and three dimensions can 

be represented as a double-layer potential, respectively: 

1 fs a q~(2)(~.)=_~._~ /a(z)-~--nz loglrzrldS z, ~(ES, (1.1.1) 

'is ~(3) (~.) = ~ /a(z) ~ n  z 1 / I rz~ [ dS z, ~ (~ S, (1.1.2) 

where n z is the outward normal to the surface S at the point z, rz~ = z - ~ and/a( . )  is called 

the doublet distribution. These potentials are discontinuous across the surface. We denote the 

principal value of~b d (~') by 

21 - m f cos (Hz, z - ~') 
(~) - Js /a(z )  dSz, ~ e S, (1.2) 

zr i r z ~ l m - I  

where m = 2,3 for the two- and three-dimensional cases, respectively. Assuming S to be a Lyapu- 

nov surface and /a to be essentially bounded Gfinter [1, p. 49] proves that ~a (3) e H ° ' a ( S ) ,  

where H k,a (S) denotes the class of continuous functions whose derivatives of order k satisfy a 

uniform H61der condition with exponent  a. In Section 2 of the present paper we prove that in 

the two-dimensional case ~a (2) e H I ' ~ ( S ) ,  i.e. the principal value is more regular than in the 

three-dimensional case. This property of regularity has an important application in aerodynamics: 

the calculation of potential flow around aerofoils. 
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In this problem the doublet distribution la is the solution of the following Fredholm equation 
of the second kind: 

la(~)+ ~1 fs la(z) c°s(nz'Z-~)lz-{" I dSz=-2U'~ '  ~eS,  (1.3) 

where U is the velocity vector of  the undisturbed flow and U. ~" denotes the usual inner product 
in R z . We write this equation in operator notation as 

( I-K)la  =g,  (1.4) 

with K/a(~') = -~-a (2) (~') and g(~') = - 2 U .  ~'. The result of  the present paper shows that the 
linear integral operator K maps from the Banach space L** (S) of  essentially bounded functions 
into the Banach space H 1''~(S). Moreover, the operator K is a bounded mapping from L** (S) 
into H 1' a (S). 

In Section 3 we shall approximate p by a piecewise constant function/a N. From the results 
of Section 2 it follows that Kla N 6 H 1 'a(S). We shall use this result to supply error bounds for 
II #-#Nil  and max Ila(~)--lai l ,  where ~'i, ~'2, ..., ~'N are the collocation points. This collocation 

i 

method yields a large linear system of equations. In [7] we have iteratively solved this system by 
a multiple-grid method. Using Kla N e H 1 ' ' (S)  we were able to estimate the rate of convergence 
of the multiple-grid process. 

2. Regularity result 

First, we give some definitions which have been taken from Gtinter [ 1 ]. Let D C n~ 2 be a bounded 
simply connected open set with boundary S and closure/5. 
Definition 2.1. Ck(D) (C k (/5)) denotes the class of functions, which are k times continuously 
differentiable in D(/5). 
Definition 2.2. Ck'°~(D) (Ck,"(/5)) denotes the subclass of  functions in Ck(D) (ck(/5)), 
whose derivatives of order k satisfy a uniform HSlder condition with exponent or, 0 < a < 1. 
Definition 2.3. L k, a (k _> 1) denotes the class of rectifiable contours S in 2-dimensional Eucli- 
dean space with the property that for every point P on S there exists a number e > 0 such that 
the part 2; of S within the circle B e,p of radius e and centre P, for some orientation of the axes 
of the coordinate system (x,y), admits a representation 

y=F(x) ,  x e/se,p, 

where F e C k' eL(/se,p) , D--e, P the projection of the part of S within Be, p on the line y = 0. 
We give an illustration of Definition 2.3 in the following figure: 

(2.1) 
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Figure 2,1. 

Y 
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Illustration of Definition 2.3 (/)e,P is given by ). 

We remark that Definition 2.3 implies that S is bounded. 
Definition 2.4. H k' a (S) denotes the class of  function f defined on S with the property that the 

function fde f ined  by 

f ( x ) = f ( x , F ( x ) ) ,  x e D e ,  P, 

with F (x )  and/-)e, P as in Definition 2.3, belongs to the class Ck'a(De,p).  
Remark 2.1. Let S e L k'°' with k > 2 and let z, ~" e S. Then 

2 cos (n z, z -  ~') 
lim = tc (z), 
~-+z Iz-~" I 

where K (z) is the curvature at z. Moreover, r belongs to the space H k -  2, ,, (S). 
Proof. Let (g, rl) be a local coordinate system about a certain po in tP  e S (see Figure 2.1). By 
Definition 2.3 the points z and ~" may be represented by (x, F(x))  and (g, F(g)), respectively. 
Now 

c o s  ( n  z ,  z -  ~') = 

whence 

2 cos (n z, z -~ )  
lim 
~-~z I z-~" I 

F(x)  - F(g) + (g -x )F '  (x) 

{(x-g)  2 + ( F ( x ) -  F(g))2}i  {1 + (F'(x))2 } i ' 

= l i m  
2{F(x)  - F(g)  + ( G - x ) F '  (x)} 

~-~x {(x_g) 2 + (F(x) - F(g))  2 } {1 + (F'(x))2 } -~ 
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Since 

and 

F(x)  - F ( t )  + ( t - x ) F '  (x) = ( t - x )  2 fo 1 t F "  (x + ( t - x )  t) dt 

F(x)  - F ( t )  = ( x - t )  fo 1 F ' ( x  + ( t - x )  t) dt, 

we obtain 

2 cos (nz ,Z - [ )  
lim = F " ( x ) / { l  + (F'(x))2} 3/2 , 

which is the definition of  the curvature K. Since F e C k''~(De,P) it follows that K has continuous 

derivatives up to order k - 2 .  [ ]  
In the two-dimensional case the potential due to a doublet distribution p along the boundary 

is given by: 

cos (n z, z - f )  
1 ~ p(z)  dS z (2.2) 

Ca(D= - ~  s Iz-~" I ' 

with ~" I S. The contour integration is taken along the boundary in a counter-clockwise direc- 
tion. Since Ca = Ca (2) we further omit the upper index (2). 

Lemma 2.1. Let  S e L 2,~ and p e H 1 'a(S) .  I f  ~ approaches S we have (Plemelj-Privalov for- 
mulae): 

1 (2.2.1) 

with 

I m ¢~- (~') = ½ u (~') + ~ ¢a (~'), (2.2.2) 

cos (n z, z-~')  
1 ~ p ( z )  dS z, ~ e S ,  (2.2.3) 

Ca(~') = ~ s Iz-~" I 

where ¢~ and d~ denote the limit from the outer and inner side respectively. 
Proof. See Muschelischwili [4, pp. 3 6 - 4 2 ,  p. 52]. [ ]  

For z = ~" the integrand in (2.2.3) is defined by its limit value, i.e. the curvature at ~'. In 
Lemma 2.1 we assume that S e L 2 '~ and taking into account Remark 2.1 we conclude that 
K e H° 'a (S ) .  Hence in (2.2.3) we may include the point ~" in the contour integration. Thus the 
integral in (2.2.3) may be interpreted as a proper integral. 

The main result of  this section is Theorem 2.2. The proof  of  this theorem leans strongly on 
3 - D  results given by GOnter [1, p. 312], who has proven the following theorem: let S e L 2'~ 
and p e H° 'a (S) ,  then t~ ( 3 )  6 HI 'a (S ) .  The reason why we cannot quote this theorem is that 

we only assume p to be essentially bounded. We define this space of  functions on a rectifiable 
contour, because Priwalow [6] has shown that, for such a contour, measurability and summability 
can be introduced in the same way as for a straight line. 
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Definition 4.1.5. L** (S)  denotes the Banach space of  essentially bounded functions on a rec- 
tifiable contour S and these functions are measurable with respect to S. The associated norm is 

II/x lifo - ess sup I/a(z) I. 
z e S  

It is noteworthy to remark that if S e L 2 ,a then S is rectifiable. 
Theorem 2.2. L e t  S e L 2, ~ and  la e L . .  (S) ,  then 

~a e H I ' a ( S )  • 

Proof. Let (/j, ~7) be a local coordinate system about a certain point P e S. Using Definition 2.3 
we split the boundary into two parts £ and S -  Y~. Let ~" e Z. For (2.2.3) we obtain 

1 fS-Y- /a(Z) = 

1 r cos (n z,  z - ~ )  
cos (nz,  z - ~ )  dSz  + Jr. la(Z) d S  z.  

Iz-~" I ~ Iz-~" I 

In the first integral z e S - £ a n d  therefore I z-~" I ~ 0. If  we replace ~" by (/j, F(/J)) we obtain a 
function o f / j  which has bounded and continuous derivatives up to order 2 (since S e L 2,a);  
hence the first integral certainly belongs to the class H 1, a (S). We proceed to establish that the 
second integral also belongs to H 1 ' a (S) .  We denote the coordinates of  the point ~" by/ j ,  r /and 

those of the integration point z by x , y .  Substituting r /= F(/J) a n d y  = F ( x ) ,  we obtain 

f2; cos (nz,Z-~) dSz 
I= - u(z) I z -~  I 

fB  F(x ) -F( /J )+( /J . x )F ' (x )  dx. = U(x)  
e,P {(x-/j) = + (F(x)-F(/J)) = } 

We define the following functions 

~b1(/j,x) = £ 1  F'(/J  + (x- / j )  t) d t  

and 

~O=(/j, x )  = f o  1 t F "  (/j + (x-~j)  t )  dt .  

Integrating by parts, we obtain: 

F ( x )  - F(/J) + (~j-x)  F '  (x )  = - (~j-x)  = ~b2 (/j, x ) ,  (2.3) 

and 

F ( x )  - F(/J) = (x-~j )  4 ,  (/j, x ) .  (2.4) 
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Hence, the second integral becomes 

f ~2 (~, X) 
/2 = J5  /a(x) dx. (2.5) 

~,e (1 + ¢,,~ (~,x))  

Assuming I/a 4** < A we have to prove that: 

and 

a& 
--~--[ < CA,  (2.6) 

~ & ( t ~ l ) - - ~ , r , ( ~ )  < C A  tt~,-t~t ~', V ~l , ti2 e.De,e. (2.7) 

First, we show that 

1 42 (~1, x)  - 42 (~2, x)  I < C I ~1 - h  I ~- 

Indeed, since F"  e C°'a(De,p),  we have: 

I ~k2 (~1, x )  - 42 (~2, x)  [ = I fo  I t {F" (x  + (~1 - x )  t)  - F " ( x  + ( ~ 2 - x )  t)} d t I 

(___ fo I IF"(x  + ( ~ t - x ) t )  - F" (x  + (~2-x ) t )  I dt  

< C  fo  I Ix + ( ~ l - x ) t - x  + (~2-x ) t  I a dt 

<_C' 1~1-~2 1 ~. 

In order to prove (2.6) and (2.7) we first investigate the function 

~ (~, x)  

1 + 4 ~ ( ~ , x )  " 
(2.8) 

We denote this function by R. Since 41 and 42 are bounded, it follows that R is bounded too. 
We shall now prove the following inequalities: 

I~-x I L-~' 

I a2R I<~ C 
I~-x  12-= 

for ~ - ,x ,  (2.9) 

for ~ -~x. (2.10) 

Differentiating R we obtain: 
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0R t)ff2 aft1 a~- - a---~- (1 + I]J12) -1 - 2(1 + ~ ) - 2  ~, ~ ~2. (2.11) 

It can be easily proved that IO~l/atl <Co. Since I1 + ~b~ 1 > 1, I~01 I <(cl and 142 I<~c2 (with 
co, c~, c2 certain constants that depend onF), it follows that 

0R I 1< 1+2COClC2 
Inequality (2.9) will have been proved when we have shown that 

a¢2 ] C 
- ~  < (2.12) 

I t -x  I 1-~ 

From (2.3) we obtain 

Since 

O 42 42 F' (t) - F' (x) 
at  - 2 ~ + (x_t)2 (2.13) 

F'( t )  - F'(x) = - ( x - t )  fo I F" ( t  + ( x - t ) t ) d t ,  

it follows that 

~ 2  1 tF" a---~- = ~2 fo ( t + ( x - t ) t ) d t -  fo ~ F " ( t + ( x - g ) t ) d t } / ( x - t )  

1 1 
- ( x - t )  fo ~ F " ( ~ + ( x - t ) X / E ) - F " ( t + ( x - t ) t ) } d t .  

Hence, 

l I c <<- ix_t------T fo 1 I t + ( x - t ) x / 7 - -  t - ( x - t ) t l a  dt 

C 
C £1 ix/7-_ t i~ dt ~ < 

Ix - t  11-~ I x - t l  1-~ 

Using (2.9) and (2.12) we obtain by another differentiation of R the estimate: 

F 2RI p02 21 c3 
Therefore it suffices to show that 

l a2~2 I< c 

Ix-~ 12-~ 
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Differentiating (2.13) we obtain: 

a2~2 2¢2 

at 2 ( x - t )  ~ 

2 8 ~2 2 F" (~) 
+ - -  + - -  { F ' ( t ) - F ' ( x ) } + ~  

( x - t )  a t  ( x - t )  3 ( x - ~ )  2 

3 aeJ2 1 F " ( O  
(x-~) a~-  + (x-t) ---mY {F'(t) -F '(x)} + (x_t)----- T 

(x-t)  ~ -  + (x-t)  ~ F"(t  + (x-~)t)dt 

Because of the mean value theorem the expression within square brackets is equal to 

F"(t) - F"(t  + (x-~)t*), for some t* e [0,11. 

SinceF" eC°'a(De,v) and [ -"~'-- [ aft2 

< Ix-~ 12-a 

C 
< , it follows that 

I x_ t l  x-~ 

We now consider the integral 

dI2 f~ OR d---~- (t) = e,P la (x) - ~ -  (t, x) dx. 

Without loss of generality we can take/)e,p equal to [0,1]. Since II/a Iloo ~ A, it follows that 

[de2 , [dx. _ - - ~  (t, x)  

Using estimate (2.9) we conclude that the singularity in aR/a~ is integrable. Hence, dI2/dt is 
bounded. We proceed to establish (2.7). Let 8 = I ~1 - t2  I, then 

I ~'~ ~'~ I ~ °~ I (2.14) 

<A_ ~,~,-2~ ~ (~2,x) dx+A J~,-2~ - ~ - ( ~ " x )  dx+ 

~;:~'1  °~ °~ 4 ' [ ~  ~ I ~ -  (~,,x)- ~ -  (t2,x) dx + A f~,+2, - f f  (~l,x)- ~ -  (t2,x) dx 

Because of inequality (2.9) we obtain for the second integral on the right-hand side of (2.14): 
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1_2~ 5 (~1) d x <  ] ~ l - x  l d x < c ( 2 8 )  a. 
J~ -28  

Since the interval I ~ l - x  I < 26 is contained in the circle 1~2-x l<  36, we obtain for the first 
integral the estimate c (36) a. Therefore the sum of the first two intgrals is less than a number of 
the form c6 a 

Finally, we have to estimate the last two integrals of (2.14). For x ~ [~1, ~2 ] the mean-value 
theorem yields 

aR /)R /)2R 
~'--~- (~I ,X)--  ~ ( ~ 2 , X ) = ( ~ 1 - - ~ 2 ) - ~  (~*,X), 

where ~* denotes some point of the interval [~ 1, ~2 ]" From inequality (2.10) 

~R aR ] 
- < 6 ¢  I *-x I 

so that for the third integral the following estimate is obtained: 

c6 f~,-2~ (~, x ) a _ 2 d x =  c6 ( l a_----~ ~ * - ~ 1 + 2 6 )  ~ - 1 - ~ * ~ - 1  < ~-6~. 

In the same way we obtain a similar estimate for the last integral. Hence, the left-hand side of 
(2.14) is less than a number of the form c 6 a A. By definition 6 = I ~1 -~2 I and thus inequality 
(2.7) has been proved. This completes the proof of Theorem 2.2. []  

One of the most important applications of potential theory is solving Dirichlet and Neu- 
mann problems. The solution of a Dirichlet problem can be sought in the form of the double- 
layer potential ~b d (2.2). In the case of an interior Dirichlet problem the boundary value ~d is 
prescribed and the solution ~b d follows from (2.2) as soon as the doublet distribution/a has been 
determined from equation (2.2.2). Let the integral operator in (2.2.3) be denoted symbolically 
by K: 

cos (nz, z - f )  
-1 ~ U(z) dS z feS .  (2.15) Kp(~)= --~-s Iz-~" I ' 

From Theorem 2.2 it follows that K/a e H 1, ~ (S) if S e L 2' ~ and/~ e L.~ (S). We conclude that 
the operator K maps from the Banach space L~ (S) into the class H l, =(S), which is a Banach 
space too if it is equipped with the following norm: 

1 
I1fll 1 ~ =  ~3 IIDIflla, 

' l=0 

where D denotes differentiation in the tangential direction and 

I f ( z 1 ) - f ( z 2 )  I 
IIf I1,, = Ilflloo + sup 

zt,z2eS [Zl--Z 2 [ Ot 
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Since K is a linear operator, Corollary 2.3 follows directly from Theorem 2.2: 
Corollary 2.3. Let  S e L 2, a, then the operator K mapping from L o. (S) into H l, ~ (S) is bound- 

ed, i.e.: 

II K/a II 1 ,~ <- C II/a Iloo, for  all t~ e L~  (S). 

We note that the space H I' a (S) is compactly imbedded in the space L~. (S). From this property 
and the previous corollary follows: 
Corollary 2.4. Le t  S e L 2, ~, then the operator K mapping from L o~ (S)  into L 0. (S)  is compact. 

Remark 2.2. From the Fredholm alternative theorem for compact operators, it follows that 
equation (2.2.2) has a unique solution for each boundary function Ca e Loo (S) ifS e L 2,a (see 
also Zabreyko [9, p. 218]). In addition, the operator (1-K)-1  is bounded on the space L oo (S), 

II ( I - K )  -~ I1~ < C. 

Corollary 2.5. L e t S  e L 2, a an d Ca e H 1' a(S), then the solution o f  ( 2.2.2 ) belongs to  H l '  a (S) .  

Proof. From Remark 2.2 we have/~ e Loo (S). But (2.2.2) can be written as 

/a = 2Cd + K/a. 

By Theorem 2.2 it follows that the right-hand side belongs to H 1, a (S). 

3. Aerodynamic application 

For incompressible and irrotational flow around a two-dimensional body, there exists a velocity 
potential C satisfying Laplace's equation 

AC =0  , (3.1) 

with boundary conditions 

0C 
- 0 along the boundary S, (3.2) 

On e 

and 

¢(~) ~ U-~ for I~" I ~ ,  (3.3) 

where O/On e denotes differentiation in the direction of the outward normal to S and U-~" de- 
notes the usual inner produce in IR 2 . The velocity potential C is given by the superposition 

C (~') = Ca (~') + U- ~', (3.4) 

where Ca is defined by (2.2) and # the solution of equation (3.6.1). By standard arguments the 
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above Neumann problem for the exterior of  the boundary S is transformed to a Dirichlet prob- 
lem in the interior. 

Lemma 3.1. Let  S e L 2, a and la e H 1' a(S) ,  then the boundary condition (3.2) can be replaced 
by: 

~ -  (D = o, ~ e s .  (3.5) 

Proof. See Martensen [3, p. 247]. 

From Lemma 3.1 and the equations (3.4) and (3.5), it follows that condition (3.2) is satis- 

fied if the doublet distribution/a is the solution of  the following Fredholm integral equation: 

cos (nz, z - ~  ) 
1 ~ la(z) dS z = - 2 U . ~ .  (3.6.1) 

/a(~)+ ~ s Iz-~ ' l  

We write this equation in operator notation as 

( I  - K )  # = g ,  ( 3 . 6 . 2 )  

where g(~') = - 2 U .  ~" and K the integral operator defined by (2.15). From Remark 2.2 it follows 

that (I - K)  has a bounded inverse on Lo. (S). Further it can be verified t h a t g e H l , a ( S )  and 
as a consequence o f  Corollary 2.5 we obtain/a e H l , a ( S ) .  

Now we discuss the convergence of  a sequence of  approximations to the unique solution of  

(3.6.2). We divide the boundary S into N segments Si, so that S -- S1 + $2 + ... + SN. The begin- 
and end-points of  the ith segment are zi_ 1 and zi, which are called nodal points. We approxi- 

mate the function/a(~'), ~" e S, by a step-function and we solve the resulting equation by a collo- 
cation method. The collocation points ~'i, i = 1, 2 . . . .  , N, are taken to be the mid-points of  the 
segments S i. 

Definition 3.1. Let (x, y )  be a local coordinate system about collocation point ~'~ and let the 
coordinates o f  the nodal point z i be given by (xi, F(x i )  ) with F ( x )  as in Definition 2.3. The 
coordinates of  the collocation point ~'i are defined by (~, F(~)) with ~ = (xi_ 1 +xi)/2" 

We write the approximating step-function in operator notation as follows: 

N 
TNbt(~) = .~-" 12(~ i) Ui(~) ( 3 . 7 )  

t= l  

with 

J 1, ~" e s i, 
U i (~) ! 

(0 ,  ~ ¢ si. 

We define T N as a linear mapping from the space C(S)  of  continuous functions on S (with the 

supremum norm II • II00) to X N = span (ul . . . . .  UN). It is noteworthy to remark that T N is not  a 
projection operator in C(S),  because X N is not a subspace of  C(S). However, X N C L . .  (S) and 
it is easy to prove the following. 
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Lemma 3.2. The mappings T N and I -  T N are bounded from C(S)  into L** (S). 

Proof. For a l l f e  C(S)  we have 

sup IlZgflloo = max If(~'i) l < Ilfllo~.[] 
f e C ( S )  1 < i < N  

Let h N be a measure of the mesh-size defined by: 

h N = max ] z i - z i -1  I. 
I < i < N  

We assume that the partition of the boundary is such that limN~ ~ h N = O. 
Lemma 3.3. Le t  S e L 2, ~ and f e H 1, ~ (S), then 

I I f t - Z g ) f l l  ~ ~ C h N I I f l l l ,  ~ asN-~oo .  

Proof. Draw a circle with centre ~'i and radius h N .  The proof follows from Definition 2.4. []  
For a given N an approximate solution of equation (3.6.2) is obtained by solving: 

(1 - T N K  ) ~IN = TNg, ~IN e X N. (3.8) 

Remark 3.1. In aerodynamics this collocation method has become very popular because TNK# N 

can be easily calculated. In the two-dimensional case, angles have to be measured. 

Remark 3.2. As a consequence of Theorem 2.2 an approximation in the spaceHl '~ (S )  can be 
obtained by a single iteration 

~IN = g ar K/IN, (3.9) 

where/IN is the solution of (3.8). It is easily verified that 

"~N = g + K TN'~N . 

For the case in which T N represents a projection operator and K a sufficiently regular integral 
operator, the convergence properties of/.( N are discussed by Sloan [8]. 
Remark 3.3. Real aerofoils are given by a data-set of points {xi, Yi}iM_=l . Usually a continuous 
boundary is obtained by a polygon connecting the points of the data-set. However, this polygon 
does not belong to the class L 2,a and a single iteration does not yield an approximation in the 
space H ~' a (S). Therefore, if one wants the approximate solution ~'N in H l '  a (S), it is necessary 
to construct a smoother boundary through the points {xi, y i }  , e . g .  a cubic spline approximation 
so that S e L 2,a, except for a small region near the trailing edge. 

Lemma 3.4. Le t  the finite-dimensional subspace X N C L~. (S )  be sufficiently large (i.e. the 
mesh-size o f  the discretization is sufficiently small) and let S e L 2 ;~. From the existence o f  a 

bounded inverse o f  I - K on L 0o (S)  follow: 

( 1 -  T N K )  -1 exists on Lo. (S)  
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and 

CI = sup 
n > N  

II ( / -  TnK) -I IlL= ° (S)--+L~ (S) < o o .  

Proof. For e a c h f e L =  (S) we have by Lemma 3.3 and Corollary 2.3: 

l i f t -  TN) K[ II® <_c2hsv llKf lli,a <_c3hsv ll f ll=. 

But then II K-TNK II L .0 (S)-+L = (S) -+ 0 as N ~ oo and existence and boundedness on Loo (S) 
follow from Neumann's  theorem. See also Prenter [5, p. 574]. [ ]  
Lemma 3.5. Let S e L z, ~ and f e H l, ~ (S), then 

fs ~f(z)-f(~i)}dSz I ~ C2h~v+allflll'a' as N ~ o o .  
i 

Proof. Let ( x , y )  be a local coordinate system about a certain p o i n t P e  S r We denote the coor- 
dinates of  the point ~'i by (~, r/) and those of  the integration point z by (x, y) .  Using Definition 

2.4 we can represent f(z) -f(~i) by 

/ ( X )  --/(~) = (X--,~)? (~j) + (X--~j) fo  1 ' {? (~j + (x-~)t) -p(~)]> dt.  

We recall that ~'i is the midpoint of  S i. Following Definition 3.1 we denote the coordinates of  
the nodal-point z i by (x i, Yi)" Let h = (xi-xt_ 1 )/2 and G(x) = { 1 + (F '  (x)) 2 } 1/2, then the above 
integral can be estimated as follows: 

< ¢~+h ~ / ( x ) - / ( ~ ) ~  tG(x)  - G(~)~ dx + Jt-~, 
- -  J ~ ; - - h  

]f~+n l I + J ~ - h  (X--t) G (~) f o  { f ' (~  + (x -~ )  t) - P ( ~ ) }  dt  dx 

The first part  is less than Ch3 N Ill  II x,~ and the second part is equal to zero. We proceed to esti- 
mate the third part. Let x - ~  = v. Since G is bounded it follows that  

' : So' {/'(~ + ot)-/'(lj)}" dt dv I 

~ C' fo h Ivll*=llflll ,adv~f2h~v+~llflll ,~. [] 
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In Theorem 3.6 we discuss the convergence of  the approximate solutions #N e X N and 
~N e H l ' a ( S )  to the exact solution/1. We give error estimates for II/a-/l N I1.~, II TN/I-/J N I1= 
and II/a-/~v 11=. 
Theorem 3.6. [Approximation theorem ]. Let the boundary S e L 2, ~, then for N ~ oo:  

(i) It #--#N t1.. <_ C3 h N II ~t III, ~, where 1~ is the solution ot" (3.6.2) and tt N o f  (3.8). 

(ii) I l K ( I -  TN) f I1.. < r, t , l+~ Ill II 1 a, f o r a l l f e H l ' a ( S )  _ _  ' . ~4"=  N , 

(iii) II TN# -- ~N I1.0 _< ,~s,, N ' '  ~.1+~ II/~ II 1 ,~, 

(iv) II/a_ ~'N II= ~ _< "~6"'Nr' 1,1+~ II/~ II1, w 

Proof .  

(i) From (3.6.2) and (3.8) we get: 

( I -  TNK ) Oa - tt N) =/a - TNK# - TNg = U - TN/J. 

Use Lemma 3.4 and 3.3 to obtain: 

II /2--/d N[[c= ~__ C1 I112- T N / J  IIoo ~ C 3 h N Jl t.t II 1, a" 

(ii) From the construction of TNf it follows that 

N r cos(nz,  Z-~) 
K ( 1 -  T N ) f ( ~ ) = -  ~ Js { f ( z ) - f ( ~ i ) }  dSz" 

i = 1  i Iz-~" I 

Without loss of  generality we can take ~" e S r Taking into account Remark 2.1 we estimate the 
(i)-th part of the above sum by: 

f8 i c °s (nz 'Z -~)  dSz I 
• { f ( z )  - f ( ~ i ) }  I z - ~  I 

fs~ C"'h2 Ill Ill < C I f ( z ) - f ( ~ i ) l d S z  < C '  ( ' ~+h  I x l l l f l l  1 ~ d x < v  "'N ot ~ 

where ~, h are defined in the proof of  Lemma 3.5. In the other parts of  the above sum we re- 
place z by (x, F(x)). Since S e L 2,a the kernel-function cos (nz, z -~) / I z -~"  I has bounded and 
continuous derivatives up to order 2 with respect t o x .  Hence, this function can be written as a 
series expansion involving powers of  (x-G). Applying Lemma 3.5 we obtain 

I IK( I -TN) f l Ioo  < r " h  2 Ilfll I + ( N -  i~.2,, N __ v " 'N  ,~ 

< ( ~  t,l+,~ Ilfll 
- -  ~ " 4  ~ N  1 , o ~ "  

(iii) From equation (3.6.2) we get 

( I -  TNK ) TN/.t = TNg + TNK(Ia - TN/. 0 



73 

and subtract (3.8) to obtain 

( I -  TNK ) (TN/a -/aN) = TNKOJ - TN/a)" 

Applying Lemma 3.4 and 3.2 we have 

II TN/a - /aN Iloo <__ C II g ~  - TN/a ) Iloo. 

Since/a e H l, a (S) the proof  follows from part (ii) of  this theorem. 

(iv) From (3.6.2) and (3.9) it follows that 

II/a -- ~N Iloo = II K(/a - / a N )  Iloo 

II KOa- TNU ) Iloo + II K(TN/a-  ~aN) Iloo. 

Using part  (ii) and (iii) we obtain the proof  of  (iv). [ ]  
With respect to the smoothness of  the boundary S, part (ii) of  Theorem 3.6 is a modification 

of results given by Kantorowitsch [2, p. 127]. He has proven the following: let the boundary S 
be given by the parametric equations 

z ( t ) = X ( t ) + i Y ( t ) ,  t e [0,1l, 

and let co(s, t) = arg (z(s) - z(t)). I f  co is three times continuously differentiable with respect 
to s (this assumption is stronger than S e L 2,a!)  and the function f i s  two times continuously 
differentiable (i.e. f e C (2) [0,1 ]), then 

I l K ( I -  T N ) f  Iloo <__Char Ilfllz, 

where II • 112 is the usual norm of  the space C (2) [0,1]. 
Usually part (iii) of Theorem 3.6 is called super-convergence on the collocation points. Per- 

forming a single iteration of  type (3.9) the order of  super-convergence is extended to all points 
of  the boundary, as has been shown by part (iv). 

So far we did not  say anything about how to solve equation (3.8). When the dimension of  
X N is small it can be solved by a direct method (e.g. Gaussian elimination). However, when the 
dimension is large one usually uses iterative techniques. In [7] we have applied a multiple-grid 
iterative process to (3.8) and we have estimated its reduction factor ~ by 

n = II ( I -  TN) K IIxN ~ XN. 

Using Corollary 2.3 and Lemma 3.3 we obtain that T/< ChN, a s N ~  oo. Indeed, the reduction 
factor decreases as N increases. Then, asymptotically for N - ~  oo, the multiple-grid method needs 
only 2 iterations to obtain a result for which the superconvergence on the collocation points is 
preserved. 
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We have applied the numerical method of this section to the calculation of non-circulatory, 
potential flow around a K~rm~in-Trefftz aerofoil. This aerofoil is obtained from the circle in the 
x-plane, x = c e iO, by means of the mapping 

z = f ( x )  = ( x - x t )  k / ( x - c ( 8 - i T ) )  k -  1, (3.10) 

where k measures the trailing edge angle, T the camber and 6 the thickness of the aerofoil; 

e = 2l(6 + ~ ) k - ,  / (2 lx/i~-72) k, x t = e( lx/~-72-iT), 

with I the length of the aerofoil. To make f single-valued we take the principal value in (3.10). 
The Khrm~n-Trefftz aerofoil does not belong to the class L ='a because of the presence of 

the trailing edge at z = z t. At this point the curvature is not defined. In the present paper we re- 
move the corner by the additional mapping 

co =g(z) =z(1 - '~ / z )  l - l / k ,  (3.11) 

where ~ is a point inside the aerofoil. Here we locate it arbitrarily at ~ = -1.95.  By means of 
(3.11) the aerofoil in the z-plane is converted into a quasi-circular shape in the 6~-plane. This has 
been done because the inverse mapping of (3.10) converts real aerofoils (which do not belong 
to the family of K~irm~n-Trefftz aerofoils) into quasi-circular shapes too. 

x-plane z-plane co-plane 

Figure 3.1. 

We divide the circle in the x-plane uniformly into N segments. Hence the nodal-points in this 
plane are given by: 

xj=cei°i, oj=zrq/~v, / = 0 , 1  . . . . .  N .  

Substituting x], / = 0, 1 ..... N, into (3.10) and (3.11) successively, we obtain the nodal-points 
{z]} in the z-plane and ,[co/} in the ~o-plane. 

The tangential velocity V i at the point z i (z /e  K.T.-aerofoil) is obtained numerically by: 

Vi= IISN,i+l--laN,il [ d6o { 
Icoj+k-coi__~l * ~ z  z=z i ' j = I , . . . , N - 1 ,  
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where coi+_ ~ is the collocation point  corresponding with xi+ ~ . We note that  Vj is obtained by 

numerical differentiation. Therefore, from Theorem 3.6 (iv) we obtain the following error esti- 

mate 

max I V] - Vex act (z]) I ~ ChN, as N ~ oo. 
1 < j < N - -  1 

We have taken the following test cases: 

(a) k = 1 . 9 0 ,  ~ = 0 . 0 5 ,  l =  1.0, "y=0.0,  U = (1.0, 0.0), 

(b) k =  1.99, ~ = 0 . 0 5 ,  / = 1 . 0 ,  7 =0 .0 ,  U =  (1.0, 0.0). 

(3.12) 

In Table 1 we give the maximum error in the tangential velocity, i.e. the left-hand side of  (3.12), 

for increasing values of  N. For  the above test cases the error estimate (3.12) is found to be too 

pessimistic. 

N• 1.90 1.99 

32 .12 (-1)  .53 (-1)  
64 .62 (-2)  .26 (-1)  

128 .16 (-2)  .66 (-2)  
256 .39 ( -3)  .19 (-2)  

Table 1. Maximum error in tangential 
velocity 
(8 = 0.05, 1 = 1.0, ~ = 0.0, U = (1.0, 0.0)). 

For  N =  64, 128 and 25 6 the above results have been obtained by  a multiple-grid iterative process. 
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